Learning in BDI Multi-agent Systems

نویسندگان

  • Alejandro Guerra-Hernández
  • Amal El Fallah-Seghrouchni
  • Henry Soldano
چکیده

This paper deals with the issue of learning in multi-agent systems (MAS). Particularly, we are interested in BDI (Belief, Desire, Intention) agents. Despite the relevance of the BDI model of rational agency, little work has been done to deal with its two main limitations: i) The lack of learning competences; and ii) The lack of explicit multi-agent functionality. From the multi-agent learning perspective, we propose a BDI agent architecture extended with learning competences for MAS situations. Induction of Logical Decision Trees, a first order method, is used to enable agents to learn when their plans are successfully executable. Our implementation enables multiple agents executed as parallel functions in a single Lisp image. In addition, our approach maintains consistency between learning and the theory of practical reasoning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

THÈSE Pour l’obtention du grade de DOCTEUR D’UNIVERSITÉ Discipline: INFORMATIQUE

The goal of this thesis is to study the issue of rational BDI learning agents, situated in a multi-agent system. A rational agent can be defined as a cognitive entity endowed with intentional attitudes, e.g., beliefs, desires, and intentions (BDI). First, we study the concepts of agency and practical reasoning, allowing agents to induce from their intentional attitudes, a behavior identified as...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Operational Semantics for BDI Modules in Multi-agent Programming

This paper proposes an operational semantics for BDI modules that can be incorporated in multi-agent programming languages. The introduced concept of modules facilitates the implementation of agents, agent roles, and agent profiles. Moreover, the introduced concept of modules enables common programming techniques such as encapsulation and information hiding for BDI-based multi-agent programs. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004